
Lübeck University

Institute for Theoretical Computer Science

Studienarbeit

Migrating the Thunar File Manager to the

Extensible Asynchronous

Virtual File System Layer GIO

Jannis Pohlmann

October 1, 2009

Supervised by

Prof. Dr. Till Tantau

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst

und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Lübeck, October 1, 2009

iii

Abstract

Contents

Listings ix

1 Introduction 1

1.1 Thunar and GIO in a Nutshell . 2

1.2 A Brief Comparison of ThunarVFS and GIO 4

1.3 Overview of the Migration to GIO . 4

2 Migration Process and Selected Topics 7

2.1 Planning Phase and Migration Strategy . 7

2.2 A Detailed Comparison of ThunarVFS and GIO 8

2.3 Resolving and Loading Files Asynchronously 14

2.4 Framework for Time-Consuming Operations 18

2.5 Thumbnail Generation Using the Tumbler D-Bus Service 20

3 Summary and Evaluation 29

3.1 Summary of the Changes . 29

3.2 New Features . 30

3.3 Known Major Regressions . 33

3.4 Consequences for Other Applications . 34

4 Outlook 35

Literature 37

Listings

2.1 The ThunarBrowser methods for resolving files and volumes. 16

2.2 Simple use case of the ThunarBrowser methods. 17

2.3 Declarations of ThunarVfsJob and ThunarVfsSimpleJob in simplified Vala

syntax. 19

2.4 API of ThunarVfsThumbFactory in simplified Vala syntax. 21

2.5 Example of a custom ThunarVFS thumbnailer definition. 21

2.6 D-Bus interface definition for the thumbnailer service. 23

2.8 Output of the example thumbnailer client. 25

2.7 Example thumbnailer client written in Vala. 26

ix

1 Introduction

Virtual file systems allow applications to access different types of file systems in a uni-

form way. They are responsible for providing the following features to other libraries

and applications:

• a uniform way to access different (virtual) file systems;

• detailed information about files and directories;

• high-level APIs for operations like copy, move, rename, trash or delete;

• ways to monitor files and directories for changes;

• an association of files with applications installed on the system; and

• storage device handling, also referred to as volume management.

Among the variety of applications mostly using virtual file systems in order to support as

many different locations as possible for writing and reading, file managers are probably

the most extensive and complex example for their use.

This thesis describes the migration of the open source file manager Thunar from its

original virtual file system (VFS) implementation ThunarVFS to an asynchronous and

extensible implementation called GIO. Various migration and implementation problems

are covered in more detail as they might be of wider interest when writing file managers

or desktop applications or when dealing with asynchronous application programming

interfaces (APIs) in general.

The term virtual file system is often used ambiguously and this thesis is no exception.

It is applied to abstraction layers in the same manner as it is used for describing concrete

implementations of file system backends. The most prominent example used in the

following chapters involves GIO (the GLib Input, Output and Streaming Library) and

GVfs, a GIO extension and collection of several backends for different virtual and remote

file systems.

This chapter introduces Thunar and GIO by describing their origin and context as

well as the design of the file manager in section 1.1. For a better understanding of the

general purpose and architecture of ThunarVFS and GIO, a basic comparison is given

in section 1.2. An in-depth comparison with special focus on technical aspects can be

1

1 Introduction

Figure 1.1. Thunar using different views and toolbars

found in chapter 2. The chapter closes with section 1.3 by providing a quick overview of

the migration and the topics selected for this thesis.

1.1 Thunar and GIO in a Nutshell

Thunar is a file manager written and maintained as part of the open source desktop

environment Xfce. Originally started by Benedikt Meurer in 2005, it has been around

since the 4.4 release of Xfce in late 2007. Thunar was designed from the ground up

to be fast and intuitive. It can be used with assistive technologies and implements the

most relevant freedesktop.org specifications to ensure compatibility with other desktops

and applications. As a file manager its main task is to enable users to browse and

manage files and folders on their computers. This includes everything from listing folder

contents, launching copy, move and delete operations and opening files with applications

installed on the system up to generating preview images and handling storage devices,

often referred to as volume management. In a modern desktop scenario, the file manager

is usually also responsible for supporting other applications in accessing the file system

by providing commonly used services.

Like in all other components of Xfce, the GTK+ toolkit is used to build the graphical

user interface of Thunar. Even though being written in C, Thunar follows the object-

oriented programming paradigm by making heavy use of GObject and the GType type

system, both of which are part of GLib, a utility library that is also used by GTK+ and

the rest of Xfce. Thunar is split up into three components, as can be seen in figure

1.2. As mentioned briefly before, ThunarVFS is a file system abstraction layer which

2

1.1 Thunar and GIO in a Nutshell

Thunar D-Bus Service

Thunarx ThunarVFS

Plugins Thumbnailers

O
ther

A
pplications

Figure 1.2. Basic architecture of Thunar

was developed together with Thunar. Being the library to be migrated away from, it

plays a major role in this thesis. ThunarVFS is described in more detail in sections 1.2

and 2.2. Thunarx is an extension framework which allows plugins to be written for

the file manager. Finally, Thunar itself describes the application written on top of these

libraries, which aside from the graphical user interface also provides a D-Bus (a widely

used inter-process communication system) service for other desktop applications.

GIO was, along with GVfs, developed by Alexander Larsson with the goal to even-

tually replace GnomeVFS, a VFS layer previously used inside the GNOME desktop en-

vironment. GnomeVFS had numerous shortcomings which were discussed broadly [5].
GIO avoids these limitations by providing a high-level asynchronous API that is heav-

ily extensible. It was merged into GLib in late 2007 and was first released as part of

GLib 2.16.0 in March 2008.

The reason for moving the virtual file system layer to the lower bottom of the GTK+
software stack was to enable GTK+ and all applications built on top of it to take advan-

tage of it. Designed for extensibility, it mainly serves as a uniform wrapper for various

VFS backends. These can be loaded on demand, typically run in separate processes and

communicate with GIO over D-Bus. They can thus be easily shared among all applica-

tions in the current desktop session—something from which the user experience greatly

benefits. Several such implementations are available as part of GVfs, the most accepted

set of GIO extensions to date. In order to be useful on its own, a virtual file system

extension for accessing local files is already shipped with GIO itself.

3

1 Introduction

1.2 A Brief Comparison of ThunarVFS and GIO

Both, ThunarVFS and GIO are virtual file system abstraction layers. As such they provide

roughly the same set of features that was already mentioned earlier in the introduction.

In file managers virtual file systems like ThunarVFS and GIO play a key role as every

piece of information is retrieved and all operations on the real file system are performed

through them.

The main differences between ThunarVFS and GIO are the extensibility and asyn-

chronous API design of GIO. Unlike ThunarVFS, which was written especially for being

used in Thunar, GIO takes a much more generic approach and leaves a lot of implemen-

tation details open to extensions. Extension points are available for virtual file systems

such as the SSH File Transfer Protocol or Windows network shares, volume manage-

ment, file monitoring and the association of file types with applications. This makes it

much more flexible and powerful than ThunarVFS.

GIO provides asynchronous APIs for all operations that may run for a long time,

and, if performed synchronously, may freeze the user interface of an application. This

includes everything from querying file information up to mounting volumes. Asyn-

chronous functions are very important when dealing with slow drives and remote file

systems. Since ThunarVFS only supports local files, it is only logical that most of its APIs

(except for file operations) are synchronous.

1.3 Overview of the Migration to GIO

Abandoning a virtual file system layer in favor of another in a file manager and an entire

desktop environment is nothing short of a complex undertaking. As can be deduced from

the comparison in section 1.2, everything a file manager does is based on the information

it requests from and the operations it performs on the virtual file system. Other desktop

applications depend on the file manager as a service for common routines and graphical

user interface elements like file information dialogs. Changes made to the foundations of

a file manager not necessarily but often affect its behaviour and thus, have implications

on other applications as well. This especially holds when modifications introduce gaps

in functionality. Finally, abandoning a virtual file system layer that is directly used in

other applications also involves migrating these applications.

The migration of Thunar to GIO is motivated in various ways. First of all, Xfce is a

very small open source project with only about half a dozen core developers. Every new

component introduces a new maintenance burden. Like many companies that are trying

to outsource development and maintenance of open source software pieces into different

4

1.3 Overview of the Migration to GIO

communities (Nokia does this with parts of their Maemo platform for instance), one of

the goals of Xfce is to reduce the overall maintenance overhead in order to concentrate

on the core of the desktop by to reusing components developed and maintained by

others—especially when they are already part of the software stack being used, as is

the case with GIO. Being part of GLib and thereby widely used and tested in GTK+ and

GNOME, GIO is very likely to be maintained for a long time. Thus, it is reasonable to

adopt it and only maintain the pieces missing due to gaps in functionality compared to

ThunarVFS.

If maintenance by itself already is a high burden, as is the case with ThunarVFS, this

holds even more for the development of new features. ThunarVFS, except for thumb-

nailers, is not extensible at all. As a consequence its range of features is limited by

the amount of direct contributors to ThunarVFS. GIO on the other hand provides many

extension points which makes it possible to incorporate features written by other par-

ties without having to maintain them. The most important extension point is the one

for GFileInfo, allowing virtual file system backends for arbitrary URI schemes such as

sftp:// or computer://. This is one of features most desired and requested by users.

With the availability of extension bundles like GVfs, GIO introduces a number of new

features, such as a better integration into Windows networks, eventually leading to a

better user experience.

The migration is also personally motivated. Performing such a complex migration—

the Thunar application (figure 1.2) alone is worth about 58,000 physical lines of code—

is a real challenge. Keeping the entire application in a working state throughout the

entire step-by-step process introduces additional difficulties. Last but not least, basing

one’s work on an existing and complex code base trains software development skills and

helps in learning more about software design and refactoring.

The following chapters describe the migration process as well as its results and con-

sequences. The most interesting and universal topics of the migration are covered in

more detail. The results are briefly evaluated in chapter 3 by summing up what new

features and regressions were introduced and how other applications are affected by the

changes made. Finally, an outlook is given in chapter 4 with a special focus on how the

situation after the migration can be further improved.

5

2 Migration Process and Selected Topics

2.1 Planning Phase and Migration Strategy

A migration as complex as this has to be planned thoroughly. In this particular case, the

first thing to investigate was which components were directly involved in or affected by

the migration of Thunar to GIO.

Thunar The file manager itself. Uses ThunarVFS for almost everything. Needs a few

fundamental changes to work with GIO.

Thunarx The Thunar extension library. Overlaps with ThunarVFS only in a single func-

tion. Easy to migrate.

ThunarVFS The current VFS layer used by Thunar. Ideally moved into its own package

for other applications to depend on it until they have been migrated.

Thunar Volume Monitor An application to perform actions when devices are plugged or

unplugged. Integral part of the user experience concept of Thunar. Uses Thu-

narVFS only for monitoring its configuration file.

Thunar Extensions There are six extension packages for Thunar, plus a few plugins

shipped with Thunar itself. Most of them use ThunarVFS for querying file in-

formation and will have to be migrated.

Thunar Thumbnailers A set of scripts called by ThunarVFS to generate preview images

for files. As GIO does not implement thumbnailing itself, it would be nice to

provide a solution that works without ThunarVFS but still supports these scripts.

Xfce Desktop Manager An Xfce core component responsible for managing the desktop,

including file and device icons. Relies on Thunar for file operations and ThunarVFS

for thumbnailing and file information. Has to be migrated to GIO. Ideally, the D-

Bus service API provided by Thunar would be extended to re-use Thunar widgets

like the file properties dialog.

GIO The future replacement for ThunarVFS. Its differences compared to ThunarVFS,

including advantages and shortcomings, are discussed broadly in sections 1.2 and

2.2.

7

2 Migration Process and Selected Topics

GVfs Besides shipping VFS backends for various URI schemes, also provides a volume

management implementation which is not part of GIO itself. Unfortunately de-

pends on several GNOME modules. To maintain feature parity before and after the

migration without drastically increased dependencies, a separate volume manage-

ment implementation would have to be written.

Some of these components, including several of the extensions and the Xfce desktop

manager, are out of the scope of this thesis, as they are maintained by other people.

The focus is thus set on replacing all occurrences of ThunarVFS inside the Thunar and

Thunarx source code with (hopefully) equivalent code based on GIO. As a step-by-step

documentation of this process would make for a very long and tedious piece of paper,

section 2.2 instead concentrates on explaining the implementation and API differences

of ThunarVFS and GIO. Descriptions of the resulting search-and-replace work and minor

refectorings are left out for obvious reasons.

As we will see, some of the differences of ThunarVFS and GIO raise more problems

than others. Selected differences that might have a wider impact on the desktop as a

whole are highlighted in sections 2.4, 2.5 and 2.3.

2.2 A Detailed Comparison of ThunarVFS and GIO

In the following, ThunarVFS and GIO are compared by describing how they implement

the VFS-typical features listed in section 1.2, and also how they differ from one another,

both from a technical and a user point of view. The implications on the migration—

or to be more specific, the modifications required to port the majority of the Thunar

source code to GIO—are not explained in detail. As we will see, most of the differences

presented here are of minor scale, and thus, almost trivially resolvable. The ones which

have a major impact are described later in this chapter.

Accessing Different File Systems

Files on supported file systems are addressed either by local paths or URIs. ThunarVFS

only implements the file:// and trash:// URI schemes. GIO by default only supports

file:// but can be extended to support arbitrary schemes. Through GVfs, trash://,

sftp://, ftp://, network:// and several others are available.

Since path or URI strings are rather inconvenient to work with, both, ThunarVFS

and GIO provide the ThunarVfsPath and GFile wrapper classes for defining and working

with URIs. They provide about the same functionality and thus, one can easily replace

the other. Their most important features include parsing local paths, URIs and command

8

2.2 A Detailed Comparison of ThunarVFS and GIO

line arguments and computing how two files are related to each other in the file system

hierarchy (e.g. via an ancestor–descendant relationship).

Querying File Information

For loading information about files and directories, again, ThunarVFS and GIO have two

very similar classes called ThunarVfsInfo and GFileInfo of which the latter is actually

an interface that can be implemented by extensions in order to add support for other

virtual file systems. They are created from a ThunarVfsPath and GFile with the main

difference being that GFileInfo allows to select which bits of the overall file information

are loaded. Other than that they are more or less equivalent. In ThunarVFS, the size of

a file can be queried with the following lines.

ThunarVfsPath *path = thunar_vfs_path_new (uri);

ThunarVfsInfo *info = thunar_vfs_info_new_for_path (path, &error);

ThunarVfsFileSize size = info->size;

The same code based on GIO looks slightly more complicated but is also more pow-

erful. The following example also demonstrates how only certain attribute names like

standard::size or attribute namespaces like standard can be selected.

GFile *file = g_file_new_for_uri (uri);

GFileInfo *info = g_file_query_info (file, "standard::*", cancellable, &error);

guint64 size = g_file_info_get_attribute_uint64 (info, "standard::size");

Filtering attributes can have positive impacts on the performance when operating on

slow drives or remote file systems. However, due to the internal design of Thunar,

information about a file is usually only queried once. Thus, being able to filter means

to make a decision on what to filter. This decision would be easy if it only affected the

file manager itself. Unfortunately, plugins written based on Thunarx by default only

have access to the same information Thunar is loading. They can query their own file

attributes but the the information which attributes and namespaces are initially available

to plugins has to be defined somewhere in the Thunarx API. At the time of writing,

the namespaces access, id, mountable, preview, standard, time, thumbnail, unix and

filesystem are being used.

File Operations

File operations like copy, move, rename, trash or delete are handled differently in Thu-

narVFS and GIO. GIO provides one synchronous and asynchronous method for each

9

2 Migration Process and Selected Topics

operation to which a finish and sometimes a progress callback can be passed. In ad-

dition, these methods optionally take a GCancellable parameter in case the operation

can be cancelled by the user from the graphical user interface. The following example

illustrates how a file copy operation can be triggered with GIO.

GFile *source = g_file_new_for_path ("/tmp/source-file");

GFile *destination = g_file_new_for_path ("/tmp/target-file");

g_file_copy_async (source, destination, G_FILE_COPY_NONE, 0, cancellable,

progress_callback, user_data, finish_callback, user_data);

The operations supported by GIO only work on individual files and are non-recursive.

For this purpose the API is decent. However, it is insufficient for complex operations like

copying or moving directories recursively.

ThunarVFS on the other hand provides a generic and much more versatile framework

for asynchronous and possibly interactive operations, which is implemented via several

GObject classes called ThunarVfsJob, ThunarVfsSimpleJob and ThunarVfsTransferJob.

Instead of passing callbacks to a function, one can create a ThunarVfsJob object and

connect to signals with different meaning. This is a concept that is used everywhere in

Thunar, GTK+, and basically everything based on GObject, and thus fits well into the

design of many applications.

ThunarVFS also offers very powerful functions for performing recursive and non-

recursive file operations such as directory listings, copying, moving, deleting files and

directories and others like changing permissions recursively, all based on ThunarVfsJob.

An example usage of this is demonstrated here, again initiating a file copy operation.

ThunarVfsPath *source = thunar_vfs_path_new ("/tmp/source-file", NULL);

ThunarVfsPath *destination = thunar_vfs_path_new ("/tmp/target-file", NULL);

ThunarVfsjob *job = thunar_vfs_copy_file (source, destination, &error);

g_signal_connect (job, "percent", G_CALLBACK (progress_callback), user_data);

g_signal_connect (job, "finished", G_CALLBACK (finish_callback), user_data);

g_signal_connect (job, "ask-replace", G_CALLBACK (ask_callback), user_data);

While this looks more complicated and verbose than the GIO snippet on the first sight, it

is much more flexible and in line with the coding style being used in the rest of Thunar.

Due to its important role inside Thunar and also in the migration, the job framework is

covered in more detail in section 2.4.

File Monitoring

ThunarVFS and GIO allow individual files and directories to be monitored for changes

using dedicated classes. In ThunarVFS there is a singleton class called ThunarVfsMonitor

10

2.2 A Detailed Comparison of ThunarVFS and GIO

with thunar_vfs_monitor_add_file and thunar_vfs_monitor_add_directory functions

to set up monitoring. These functions take a ThunarVfsPath and a monitor callback and

return a unique identifier with which the monitoring can be cancelled again later.

GIO has an interface similar to this called GFileMonitor. Its implementation may

vary depending on the platform but unlike ThunarVfsMonitor it is not necessarily imple-

mented as a singleton. File monitoring can be set up with the g_file_monitor function

which takes a GFile pointing to a regular file or a directory, and returns an instance of

GFileMonitor. One can then connect to a change signal of this instance to be notified

of changes made to the file. Once monitoring is set up the way described above, the

workflow resulting from the two APIs is again very much the same.

Association of Files With Applications

On the Linux desktop files are, by tradition, associated with applications via their MIME

type, a two-part identifier for file formats originating from Multipurpose Internet Mail

Extensions standard for non-ASCII character sets in emails, non-text attachments and

multi-part message bodies [3].

Figure 2.1. Associating files

with applications in Thunar.

The problems how to determine the MIME type of

a file and how to register an application as a possi-

ble MIME type handler are addressed by two freedesk-

top.org specifications [6] [1]. In addition to storing

MIME types supported by an application in its desktop en-

try, the file $XDG_DATA_DIRS/applications/mimeinfo.cache

can be used to define additional MIME types for an

application. The association of MIME types with de-

fault applications aare then defined using the files

$XDG_DATA_DIRS/applications/defaults.list (for global

defaults) and $XDG_DATA_DIRS/applications/mimeapps.list (individual users). It is

noteworthy that mimeinfo.cache and defaults.list are not part of any freedesktop.org

specifications and, for instance, not used by the KDE desktop environment. Based on

this information, ThunarVFS and GIO implement various classes and functions to deter-

mine the MIME type of a file, query applications capable of opening a file, get and set

the default application for a type and launch files with applications. The end result can

be seen in figure 2.1.

In ThunarVFS, each file is associated with a ThunarVfsMimeInfo, which is a simple

wrapper around its MIME type string. Using this information, applications able to handle

the file can be queried from a singleton ThunarVfsMimeDatabase. Apart from the class

11

2 Migration Process and Selected Topics

ThunarVfsMimeApplication which represents applications, ThunarVFS also supports a

deprecated but very useful part of the desktop entry specification [1] called desktop

actions. They allow desktop entries to include a number of actions in addition to the in-

formation about the application itself. These actions, ‘Burn image’ for instance, too can

be connected to MIME types and then be used in context menus. In ThunarVFS, they

are implemented via the ThunarVfsMimeAction class. To unify the workflow with these

two classes, there is an interface called ThunarVfsMimeHandler which both classes imple-

ment. The following example demonstrates how these APIs can be used to determine

the default application for a file.

ThunarVfsInfo *info = thunar_vfs_info_new_for_path (path);

ThunarVfsMimeDatabase *db = thunar_vfs_mime_database_get_default ();

ThunarVfsMimeApplication *app =

thunar_vfs_mime_database_get_default_application (db, info->mime_info);

GIO drastically simplifies this. There is no wrapper for MIME types. Instead, each

GFileInfo has a standard::content-type string attribute. There is a number of utility

functions to work with these strings, like g_content_type_equals. To represent appli-

cations in the code an interface called GAppInfo is used. It is not limited to the afore-

mentioned specifications but has an implementation based on desktop entries built in.

GAppInfo can be used in a similar fashion as the APIs from ThunarVFS, as is shown in

the following code snippet.

GFileInfo *info = g_file_query_info (file, ...);

const gchar *type;

type = g_file_info_get_attribute_string (info, "standard::content-type");

GAppInfo *app = g_app_info_get_default_for_type (content_type, FALSE);

Volume Management

Storage device handling, also known as volume management or volume monitoring, is

implemented very differently in ThunarVFS and GIO. Traditionally, volume management

implementations on Linux are written on top of a hardware abstraction layer creatively

called HAL. Since 2008 the trend is to abandon HAL in favor of DeviceKit, a modu-

lar system service with D-Bus interfaces for storage devices, power management and

more. DeviceKit-disks provides the D-Bus interface for volume management. Like HAL,

DeviceKit was first written for Linux and is now slowly being ported to other Unixes.

ThunarVfsVolumeFreeBSD and ThunarVfsVolumeHal. With HAL undergoing depre-

cation, this would soon require a rewrite based on DeviceKit-disks. Overall, the API

12

2.2 A Detailed Comparison of ThunarVFS and GIO

presented to users of the library is very simple. There are only two classes, of which

the first one, ThunarVfsVolumeManager provides methods to query available volumes.

The returned volumes are instances of ThunarVfsVolume and can be used to get in-

formation about a CD-ROM drive, floppy disk, USB stick, memory card or partition.

ThunarVfsVolume also offers methods to eject, mount and unmount a volume and sig-

nals for when a volume is mounted or unmounted. All of these methods are synchronous

and very straightforward.

ThunarVFS has two different volume management implementations built in:

The equivalent GIO API is once again a collection of interfaces which can easily be im-

plemented in the form of GIO extensions. Implementations based on HAL and gnome-

disk-utility, which is an abstraction layer on top of DeviceKit-disks, are available as part

of GVfs. GIO exposes much more of the underlying hardware. In addition to the GVolume

interface which represents user-visible partitions, there are separate interfaces for physi-

cal drives and user-visible mounts called GDrive and GMount. GDrive and GMount are only

really needed for checking whether a partition is already mounted or not. GVolume is the

main interface used to query information about partitions and to mount and unmount

them. A list of all available volumes can be retrieved through GVolumeMonitor which is

equivalent to ThunarVfsVolumeManager in that regard.

Another difference between ThunarVFS and GIO here is that, once again, all possibly

long-running or interactive operations like mounting or ejecting are asynchronous and

care has to be taken of side effects like race conditions when using them.

Other Notable Differences

File managers, desktop managers, image viewers and a lot of other applications often

require preview images of files, also referred to as thumbnails, to make them more easily

distinguishable or to add a visual aspect to the usually mostly textual file information.

Files for which thumbnails are often required include image files, videos, PDF or word

documents and fonts. What thumbnail formats are generated and how and where they

are stored is defined by the thumbnail managing standard [2], another freedesktop.org

specification.

GIO only has rudimentary support for thumbnailing. When a GFileInfo is queried

with the thumbnail::path attribute enabled it checks whether a valid thumbnail file

exists and if so, sets the attribute value to the path of the thumbnail. There is no API to

create or manage thumbnails.

ThunarVFS on the other hand not only provides methods to query, generate and

store thumbnails via the ThunarVfsThumbFactory class. For once, it also offers an ex-

13

2 Migration Process and Selected Topics

tension point for custom thumbnailer scripts. Thumbnailers are defined using desktop

entries [1] and can be used to generate thumbnails for literally any MIME type. Thu-

narVFS itself ships thumbnailers for JPEG, image formats supported by GdkPixbuf, an

imaging library used by GTK+, as well as fonts. Thumbnailers for PDF, videos and more

are provided by a separate component called thunar-thumbnailers.

The lack of thumbnailing support in GIO raises the problem how to deal with the

thumbnailing code from ThunarVFS with the ultimate goal to maintain the same feature

in Thunar even after the migration. Section 2.5 discusses possible solutions and the final

implementation in detail.

2.3 Resolving and Loading Files Asynchronously

The asynchronous GIO APIs for loading files, mounting volumes and the support for

remote file systems have implications on how an application has to load files and di-

rectories. Before accessing files on a volume, the volume first needs to be mounted.

Some files are only shortcuts to other files and have to be resolved before opening them.

There are also files that can be mounted themselves, similar to volumes. The application

preferably has to handle all this in a unified way to avoid redundant source code. In this

section, these special cases are covered in more detail, followed by a presentation of a

unified solution implemented for Thunar.

Mounting Volumes

Figure 2.2. Volumes in the

Thunar side panel.

File information queries on files on volumes that are not yet

mounted into the system raises errors. Thus, before access-

ing such files, their enclosing volume have to be mounted

first. Whether or not the enclosing volume of a file is

mounted can by checked with a call to g_file_query_info.

If the returned error code is G_IO_ERROR_NOT_MOUNTED, the

volume needs to be mounted before any file information

can be loaded. This can only be done asynchronously

by calling g_file_mount_enclosing_volume with the corre-

sponding GFile as the first argument. In the finish callback passed to the operation,

the file can then be accessed again. In Thunar, this process of mounting volumes before

accessing their contents is being used in the side panel when a user clicks on of the

not yet mounted volumes, which are distinguished from other volumes by their slightly

transparent icons (figure 2.2).

14

2.3 Resolving and Loading Files Asynchronously

Resolving Shortcuts

Figure 2.3. Windows

workgroup shortcuts.

In GIO, shortcuts are virtual links to other files. They dif-

fer from symbolic links in that the link information is not

stored on disk and that they are only virtually pointing to

another URI. They may also reference files across different

URI schemes while symbolic links are restricted to files lo-

cated on the same partition. The GFileInfo objects of all

shortcuts have a standard::target-uri attribute. When a

shortcut is to be opened, the URI referred to in this attribute has to be loaded instead.

Shortcuts are being used by GVfs for Windows network shares and workgroups, as can

be seen in figure 2.3.

Mounting and Resolving Mountable Files

Figure 2.4. Drive and SFTP

mountables in Thunar.

Mountable files are used to represent volumes and their

mount points or root folders. They may point to mount-

able drives or partitions as well as virtual/remote locations

such as SFTP hosts or FTP base URIs. They can be mounted

asynchronously via g_mountable_mount which is very sim-

ilar to g_volume_mount. Once mounted, the application

is supposed to load and open the URI referred to in the

standard::target-uri attribute. At the time of writing, mountables only appear in the

computer:// URI scheme in order to list drives and partitions currently connected and

virtual locations currently mounted, as is shown in figure 2.4.

Unified Solution Implemented in Thunar

To reduce the amount of redundant and copied code in Thunar, a unified way to han-

dle the situations described above was implemented. It might be of interest for other

applications or libraries that aim at providing file browsing capabilities based on GIO.

All classes dealing with opening directories or launching files implement a common in-

terface called ThunarBrowser. As in C++, which aside from virtual methods has no

interface concept, GObject interfaces can have properties, signals and methods. The

ThunarBrowser interface introduced along with the migration has two methods called

thunar_browser_poke_file and thunar_browser_poke_volume, which are shown in list-

ing 2.1. These methods are very similar to some of the APIs provided by GIO in that

they are asynchronous and along with other parameters take a callback for when the

15

2 Migration Process and Selected Topics

typedef void (*ThunarBrowserPokeFileFunc) (ThunarBrowser *browser,

ThunarFile *file,

ThunarFile *target_file,

GError *error, gpointer user_data);

typedef void (*ThunarBrowserPokeVolumeFunc) (ThunarBrowser *browser,

GVolume *volume,

ThunarFile *mount_point,

GError *error, gpointer user_data);

void thunar_browser_poke_file (ThunarBrowser *browser, ThunarFile *file,

gpointer widget, ThunarBrowserPokeFileFunc func,

gpointer user_data);

void thunar_browser_poke_volume (ThunarBrowser *browser, GVolume *volume,

gpointer widget, ThunarBrowserPokeVolumeFunc func,

gpointer user_data);

Listing 2.1. The ThunarBrowser methods for resolving files and volumes.

operation is finished. When a volume or a file needs to be resolved in one of the ways

described above, these methods can be used and the mount point or target file can be

processed in the callback. The ThunarBrowser class itself wraps 500 lines worth of spe-

cial case treatment and and error handling for all of the scenarious presented in this

section.

A very simple use case of this, taken from the location entry into which the user can

freely enter arbitrary URIs and local paths, is shown in listing 2.2. The entry point is the

function thunar_location_entry_activate which is called as soon as the user confirms

something he entered by pressing the return key.

This example demonstrates how the resolving mechanism works. Normal files on vol-

umes already mounted are directly forwarded to the finish callback. In this case the file

and target_file parameters are equal. Files on volumes that have not been mounted

yet, such as SFTP or FTP connections that are not yet established, first have their volumes

mounted, which sometimes involves user interaction for account credentials. After that,

the file is reloaded and passed to the finish callback with file and target_file pointing

to the same object once again. Mountable files are first mounted asynchronously. Like

with shortcuts their target URI is resolved into a ThunarFile object afterwards and then

passed to the finish callback. This time, file points to the mountable file or the shortcut

while target_file refers to the file into which it was resolved.

16

2.3 Resolving and Loading Files Asynchronously

static void

thunar_location_entry_poke_file_finish (ThunarBrowser *browser,

ThunarFile *file,

ThunarFile *target_file,

GError *error,

gpointer ignored)

{

_thunar_return_if_fail (THUNAR_IS_LOCATION_ENTRY (browser));

_thunar_return_if_fail (THUNAR_IS_FILE (file));

if (error == NULL)

{

/* try to open or launch the target file */

thunar_location_entry_open_or_launch (THUNAR_LOCATION_ENTRY (browser),

target_file);

}

else

{

/* display an error explaining why we couldn’t open/mount the file */

thunar_dialogs_show_error (THUNAR_LOCATION_ENTRY (browser)->path_entry,

error, _("Failed to open \"%s\""),

thunar_file_get_display_name (file));

}

}

static void

thunar_location_entry_activate (GtkWidget *path_entry,

ThunarLocationEntry *location_entry)

{

ThunarFile *file;

_thunar_return_if_fail (THUNAR_IS_LOCATION_ENTRY (location_entry));

_thunar_return_if_fail (location_entry->path_entry == path_entry);

/* determine the current file from the path entry */

file = thunar_path_entry_get_current_file (THUNAR_PATH_ENTRY (path_entry));

if (G_LIKELY (file != NULL))

{

thunar_browser_poke_file (THUNAR_BROWSER (location_entry), file, path_entry,

thunar_location_entry_poke_file_finish, NULL);

}

}

Listing 2.2. Simple use case of the ThunarBrowser methods.

17

2 Migration Process and Selected Topics

All in all, this has proven to be a very convenient API in all situations where the

state of a file or volume due to the unpredictable nature of user interaction is not known

beforehand.

2.4 Framework for Time-Consuming Operations

Many of the things a file manager does require multi-threading or at least asynchronous

processing in order for the graphical user interface to remain responsive. When dealing

with slow drives or files on other machines connected over the local network or the

internet, this includes everything down to the very atomic operations. If, for instance,

the network connection is interrupted or even lost, and the application waits for the

result of a synchronous file information query, the usual network timeout is certainly

not an acceptable response time for the user interface.

Refactoring an existing application that was not designed to be event-driven in all

possible situations is challenge on its own. Thus, this section focuses on less atomic oper-

ations like copying files or listing the contents of a folder, which were already performed

asynchronously in Thunar before the migration. In section 2.2 the major differences of

the file operation APIs of GIO and ThunarVFS were discussed. It was concluded that

the more generic high-level API of ThunarVFS is a much better approach, especially for

recursive operations which are simply not present in GIO itself.

For the migration this means that the code for ThunarVfsJob, ThunarVfsTransferJob,

and ThunarVfsSimpleJob either has to be integrated into the source code of Thunar itself,

or into one of the libraries Thunar already depends on. Listing 2.3 shows that, aside from

the infos-ready and ask-replace signals, ThunarVfsJob as well as ThunarVfsSimpleJob

are not limited to to file operations at all. In fact, they can be seen as general-purpose

classes to ease the implementation of any threaded or asynchronous operation. They

provide basic features to create jobs based on a subclass of ThunarVfsJob or simply

a delegate, which traditionally is a function pointer. Subclasses of ThunarVfsJob can

override the execute method which is processed in a separate thread once launch has

been called. Delegates are like the execute method and allow less complex jobs to be

defined without subclassing.

Some of the signals, like info-message or percent or can be emitted from within

the execute function or the delegate. Others, like error or finished are emitted by

ThunarVfsJob depending on the success of the job. The signals ask and ask-replace can

be used in case user interaction is needed. It should be noted that ThunarVfsJob takes

care of synchronizing threads when emitting signals, which makes life much easier for

developers.

18

2.4 Framework for Time-Consuming Operations

enum ThunarVfsJobResponse {

YES, YES_ALL, NO, NO_ALL, CANCEL, SKIP

}

class ThunarVfsJob : GLib.Object {

ThunarVfsJob launch ();

void cancel ();

bool cancelled ();

abstract void execute ();

signal void error (GError error);

signal void finished ();

signal void percent (double percent);

signal void info-message (string message);

signal void infos-ready (List<ThunarVfsInfo> thunar_vfs_infos);

signal ThunarVfsJobResponse ask (string message, ThunarVfsJobResponse choices);

signal ThunarVfsJobResponse ask_replace (ThunarVfsInfo src_info,

ThunarVfsInfo dst_info);

}

delegate bool ThunarVfsSimpleJobFunc (Job job, GValue[] values) throws GLib.Error;

class ThunarVfsSimpleJob : ThunarVfsJob {

ThunarVfsJob launch (ThunarVfsSimpleJobFunc job_function,

unsigned int n_values, ...);

}

Listing 2.3. Declarations of ThunarVfsJob and ThunarVfsSimpleJob in simplified Vala syntax.

Threads are rather difficult to work with, especially in a language like C which lacks

built-in synchronization features. The ThunarVFS job classes provide a convenient and

easy-to-use alternative to manual synchronization and low-level thread management.

The demonstrated flexibility of ThunarVfsJob and ThunarVfsSimpleJob thus makes them

good candidates for inclusion in a library called exo (the Xfce extension library) which

is already being used by many Xfce core applications like Thunar, xfdesktop and xfce4-

panel. By moving the two classes into this library, everything written for Xfce could

benefit from them.

Unsurprisingly, this is what happened during the migration. The classes were not

only renamed to ExoJob and ExoSimpleJob, they were also rewritten from scratch. In-

stead of synchronizing threads manually based on GThread, the threading subsystem of

19

2 Migration Process and Selected Topics

GLib, as was done in ThunarVfsJob, ExoJob was implemented using GIOScheduler, a

scheduler for asynchronous operations with integration into the GLib main event loop,

mainly used inside GIO. Both, the execute function and the ThunarVfsSimpleJobFunc

delegate also gained an additional GCancellable parameter to replace the boolean can-

cel flag previously being used.

The last remaining class, ThunarVfsTransferJob, and all convenience functions such

as thunar_vfs_copy_file and thunar_vfs_list_directory were renamed and moved

into Thunar itself, again not without being rewritten almost in their entirety. Naturally,

all file operations were implemented on top of lower-level ThunarVFS functions before,

and had to be migrated to GIO. Even though not quite as simple as a search and replace

task, this is not covered here.

2.5 Thumbnail Generation Using the Tumbler D-Bus Service

Generating and managing preview images for files, also called thumbnails, turns out

to be more complex than one would imagine. The thumbnail managing standard [2],
a widely adopted freedesktop.org specification, defines how and where thumbnails are

stored.

As discussed in section 1.2, GIO supports this standard in only one direction—loading

thumbnail information. There are no functions for generating and storing thumbnails,

most likely because the means by which thumbnails are generated usually vary between

different applications. GNOME applications traditionally use GnomeThumbnailFactory

from a library called libgnomeui and the image editor GIMP has its own built-in thumb-

nailing code, while Thunar has always used ThunarVFS for generating thumbnails.

Thumbnailing in ThunarVFS

ThunarVFS provides an implementation for generating thumbnails and saving them in

compliance with the thumbnail managing standard [2] called ThunarVfsThumbFactory.

Its design is very similar to GnomeThumbnailFactory in many regards. Its API design is

shown in listing 2.4.

In addition to built-in thumbnailing code for several image formats based on Gd-

kPixbuf, JPEG and fonts, ThunarVFS also allows for custom thumbnailers to be written.

These are defined using desktop entries including information such as supported MIME

types and a shell command, as demonstrated in listing 2.5. When being called from

ThunarVFS, these thumbnailers write the generated thumbnail image into a temporary

file which is then moved to its final location on the disk by ThunarVFS. This way cus-

20

2.5 Thumbnail Generation Using the Tumbler D-Bus Service

tom thumbnailers only have to worry about generating the thumbnails, not about saving

them in compliance with the standard which also involves avoiding race conditions dur-

ing saving.

enum ThunarVfsThumbSize {

NORMAL, LARGE

}

class ThunarVfsThumbFactory : GLib.Object {

ThunarVfsThumbFactory (ThunarVfsThumbSize size);

string lookup_thumbnail (ThunarVfsInfo info);

bool can_thumbnail (ThunarVfsInfo info);

bool has_failed_thumbnail (ThunarVfsInfo info);

Gdk.Pixbuf generate_thumbnail (ThunarVfsInfo info);

bool store_thumbnail (Gdk.Pixbuf pixbuf, ThunarVfsInfo info) throws GLib.Error;

}

string thunar_vfs_thumbnail_for_path (ThunarVfsPath path, ThunarVfsThumbSize size);

bool thunar_vfs_thumbnail_is_valid (string thumbnail, string uri,

ThunarVfsFileTime mtime);

Listing 2.4. API of ThunarVfsThumbFactory in simplified Vala syntax.

[Desktop Entry]

Version=1.0

Encoding=UTF-8

Type=X-Thumbnailer

Name=Ogg Thumbnailer

TryExec=ffmpegthumbnailer

MimeType=application/ogg;

X-Thumbnailer-Exec=/usr/libexec/ogg-thumbnailer %i %o %s

Listing 2.5. Example of a custom ThunarVFS thumbnailer definition.

As a consequence of the migration away from ThunarVFS, the thumbnailing code

faces the same situation as the job classes covered in the previous section. There are

several alternatives for dealing with this. Like ThunarVfsJob and ThunarVfsSimpleJob,

ThunarVfsThumbFactory could be moved into exo, and thereby made available to other

applications like image viewers or desktop managers. The important of this is not to

be underestimated which makes the second alternative, moving thumbnailing into the

Thunar source code itself, less realistic.

21

2 Migration Process and Selected Topics

A D-Bus Specification for Generating Thumbnails

An approach very popular nowadays is to implement features required by multiple appli-

cations as D-Bus services, thus making them globally available and loadable on demand.

A specification called the thumbnail management D-Bus specification [4] was recently

drafted in an attempt to standardize the way thumbnails are generated across all desktop

environments and applications. This specification not only defines the public interface

for separate D-Bus services for generating and managing thumbnails as well as query-

ing supported MIME types. It also specifies how custom (specialized) thumbnailer D-Bus

services have to be installed in order to be recognized by the main services defined in the

specification. This draft has been adopted by Nokia for their Hildon application frame-

work which was the foundation of the Maemo platform for mobile devices until Nokia

Service APIs

thumbnails.Thumbnailer thumbnails.Manager thumbnails.Cache

Application / Client

Queue and cancel
thumbnail requests.
Status update
notifications.

Query MIME types
supported by thumb-
nails.Thumbnailer.
Register thumbnailers
at runtime.

Notify thumbnail
cache of copied,
moved and deleted
files. Sporadic cache
cleanups.

Figure 2.5. Service architecture defined by the thumbnail management D-Bus specification

announced the move from GTK+ to Qt, another GUI framework popular for powering

the KDE desktop environment, in July 2009. The basic service architecture defined by

the specification is shown in figure 2.5.

An investigation of the details of the specification including discussions with its au-

thors revealed that the specified services would generally be powerful enough to serve

as a replacement for the ThunarVFS thumbnailing code. Its most important D-Bus inter-

face, org.freedesktop.thumbnails.Thumbnailer, shown in listing 2.6, provides methods

for queuing (Queue) and cancelling (Unqueue) thumbnail requests as well as signals for

when a request is started, finished or some URIs cannot be processed (Error). There is

also a signal to notify clients of successfully created thumbnails (Ready), thus leaving the

decision how many Ready signals per request are emitted up to the service implemen-

22

2.5 Thumbnail Generation Using the Tumbler D-Bus Service

<?xml version="1.0" encoding="UTF-8"?>

<node name="/org/freedesktop/thumbnails/Thumbnailer">

<interface name="org.freedesktop.thumbnails.Thumbnailer">

<method name="Queue">

<annotation name="org.freedesktop.DBus.GLib.Async" value="true"/>

<arg type="as" name="uris" direction="in" />

<arg type="as" name="mime_hints" direction="in" />

<arg type="u" name="handle_to_unqueue" direction="in" />

<arg type="u" name="handle" direction="out" />

</method>

<method name="Unqueue">

<annotation name="org.freedesktop.DBus.GLib.Async" value="true"/>

<arg type="u" name="handle" direction="in" />

</method>

<signal name="Started">

<arg type="u" name="handle" />

</signal>

<signal name="Finished">

<arg type="u" name="handle" />

</signal>

<signal name="Ready">

<arg type="as" name="uris" />

</signal>

<signal name="Error">

<arg type="u" name="handle" />

<arg type="as" name="failed_uris" />

<arg type="i" name="error_code" />

<arg type="s" name="message" />

</signal>

</interface>

</node>

Listing 2.6. D-Bus interface definition for the thumbnailer service.

23

2 Migration Process and Selected Topics

tation. Overall, this API is even more flexible than ThunarVfsThumbFactory, as it allows

batch processing of thumbnails as an alternative to requesting thumbnails for individual

files.

In the beginning, the specification was written for album artwork and similar features

on mobile devices. As a file manager, its Thunar of course has very different require-

ments. High throughput is essential for browsing directories with a lot of files. Being an

inter-process communication system, D-Bus has certain performance drawbacks as mes-

sages sent between applications obviously are not delivered as quickly as data passed

between threads. Thus, the decision wether or not the thumbnail management D-Bus

specification is applicable in the context of a file manager can only be made based on

testing. Notable delays and system lags would speak against its adoption.

Fortunately, a centralized D-Bus service also has certain advantages. The use of D-

Bus generally aids in establishing a loose coupling of applications and libraries. With a

standardized D-Bus thumbnailer interface, implementations can be replaced without the

applications noticing. Memory usage can be reduced as information about custom (or

specialized) thumbnailer scripts are only stored in memory once. A centralized service

also allows for fine-tuning and the employment of clever scheduling algorithms for a

better overall performance.

Implementing the D-Bus Specification for Thunar

Along with the migration of Thunar to GIO, an implementation of this specification,

called Tumbler, was implemented and later integrated into Thunar. The name, taken

from the tank-like Batmobile appearing in Christopher Nolan’s Batman movies, coinci-

dentally derives all its seven letters from the word "thumbnailer" in exactly the same

order they appear in it. Like Thunar, it is written in C based on GObject. Inspired by

Hildon’s hildon-thumbnail, it takes the concept one step further by being designed in a

more object-oriented fashion, supporting different schedulers as well as plugins in ad-

dition to the specialized D-Bus thumbnailers defined in the specification. It also adds

an abstraction layer on top of the thumbnail cache so that in theory, thumbnails can be

stored deviating from the thumbnail managing standard [2] without affecting applica-

tions using the service. Different thumbnail caches and specialized thumbnailers can be

implemented as plugins, the latter helping in drastically reducing the amount of traffic

sent over D-Bus. For third-party and proprietary thumbnailers the preferred way still is

to be implemented as D-Bus services in adherence to the specification.

Migrating Thunar to Tumbler for thumbnail generation can be seen as a two-step

process. One part of it is to replace references to ThunarVfsThumbFactory in the Thunar

24

2.5 Thumbnail Generation Using the Tumbler D-Bus Service

source code with more or less equivalent Tumbler client code. The other part is to

migrate existing ThunarVFS thumbnailers to Tumbler, which includes writing a Tumbler

plugin capable of loading custom ThunarVFS thumbnailers from files like the one shown

in listing 2.5. Only the first part is covered here, as it provides a general insight into how

to implement the client-side part of the thumbnail management D-Bus specification in

an application.

Implementing a Thumbnailer Client

A very simple thumbnailer client is shown in listing 2.7. Implementing such a client is

done by establishing a connection to the D-Bus session bus, creating an object for the

D-Bus interface and connecting to its signals. After these initial steps, methods on this

object can be called synchronously or asynchronously.

The example client shown in listing 2.7 first connects to the bus, and creates an ob-

ject for the org.freedesktop.thumbnails.Thumbnailer interface. It then connects to the

Started, Finished, Ready and Error signals which are defined in the thumbnail manage-

ment D-Bus specification. When started, it queues thumbnail requests for two images,

one with a valid and the other with an invalid MIME type. The basic communication

with the thumbnailer service is demonstrated in listing 2.8 which shows the output of

the example client. For each request, the Started signal is emitted first, followed by

either a Ready or an Error signal. Each request is finished off with a Finished signal. If

the ability to cancel requests and to query MIME types supported by the service before

requesting thumbnails is not important, then this is all a thumbnailer client needs to do.

request queued: handle=85

request queued: handle=86

started/finished (handle=85)

ready (uris[0]=file:///tmp/0016.png)

started/finished (handle=85)

started/finished (handle=86)

error (handle=86, failed_uris[0]=file:///tmp/0016.png, code=1,

msg=No thumbnailer available for ’file:///tmp/0016.png’)

started/finished (handle=86)

Listing 2.8. Output of the example thumbnailer client.

When performance and responsiveness become an issue, however, more advanced

techniques have to be employed in the client-side implementation of the service API.

During the migration to GIO, Thunar gained a new class called ThunarThumbnailer which

25

2 Migration Process and Selected Topics

using GLib; using DBus;

public class TumblerClient : GLib.Object {

private DBus.Connection connection; private dynamic DBus.Object proxy;

private void started_or_finished (dynamic DBus.Object proxy, uint32 handle) {

print ("started/finished (handle=%ld)\n", handle);

}

private void ready (dynamic DBus.Object proxy, string[] uris) {

print ("ready (uris[0]=%s)\n", uris[0]);

}

private void error (dynamic DBus.Object proxy, uint32 handle,

string[] failed_uris, int32 code, string msg)

{

print ("error (handle=%ld, failed_uris[0]=%s, code=%d, msg=%s)\n",

handle, failed_uris[0], code, msg);

}

public void run () {

connection = DBus.Bus.get (DBus.BusType.SESSION);

proxy = connection.get_object ("org.freedesktop.thumbnails.Thumbnailer",

"/org/freedesktop/thumbnails/Thumbnailer",

"org.freedesktop.thumbnails.Thumbnailer");

proxy.Started += started_or_finished; proxy.Finished += started_or_finished;

proxy.Ready += ready; proxy.Error += error;

uint32 handle;

proxy.Queue(new string[] { "file:///tmp/0016.png" },

new string[] { "image/png" }, (uint32) 0, out handle);

print ("request queued: handle=%ld\n", handle);

proxy.Queue(new string[] { "file:///tmp/0016.png" },

new string[] { "invalid/mime-type" }, (uint32) 0, out handle);

print ("request queued: handle=%ld\n", handle);

}

public static int main (string[] args) {

var loop = new MainLoop (null, false); var client = new TumblerClient ();

client.run (); loop.run (); return 0;

}

}

Listing 2.7. Example thumbnailer client written in Vala.

26

2.5 Thumbnail Generation Using the Tumbler D-Bus Service

uses several tricks to make thumbnail requests more efficient while interfering with the

application’s main loop as little as possible.

Thunar uses tree, list and icon views to display folders to the user. In GTK+, this in-

volves a model/view concept with cell renderers for drawing the contents of individual

cells. In Thunar, each view has a cell renderer specifically targeted at drawing thumb-

nails for the files being displayed. Once a file becomes visible in the view, it is piped

through this renderer which then draws the thumbnail on the screen. This is the point

where Thunar generates thumbnails for individual files on-demand. The fact that cell

renderers are stateless (renderers don’t own the objects they are drawing; a single cell

renderer draws all the objects) generates one thumbnail request per file which is very

inefficient.

ThunarThumbnailer is more or less used as a singleton class in Thunar, which solves

the above issue by using a wait queue that is processed at most every 100 milliseconds.

Individual thumbnail requests made in this time frame are grouped and sent out over D-

Bus as a single request. Compared to sending individual requests which for n thumbnails

generates 4n D-Bus messages (Queue call and n Started, Ready/Error and Finished sig-

nals), this approach can reduce the D-Bus overhead to 3+ n messages (one Queue call,

one Started and Finished signal, n Ready/Error signals). This calculation only holds

in static situations with no user interaction. However, the more individual thumbnail

requests are made within the 100 millisecond time frame, the better this technique per-

forms. This is particularly important when a user scrolls up and down obsessively.

In order to avoid pointless requests, files are filtered before they enter the wait queue.

The org.freedesktop.thumbnails.Manager service is used to query a list of supported

MIME types which is kept in sync over the runtime of the application. Like files that are

already in the wait queue and files that are already being processed by the thumbnaile

rservice, files with unsupported types are not added to the wait queue and are simply

ignored.

To stay out of the way of the application’s main loop, all D-Bus calls are performed

asynchronously. As the application does not receive request handles and other replies

immediately, ThunarThumbnailer needs to manage internal request identifiers in addi-

tion to the request handles returned by the thumbnailer service. Two hash tables are

employed to establish a bidirectional mapping between them. The class also remembers

which URIs are associated with each request. These mappings are then used in the sig-

nal handlers. All signal handlers utilize idle functions, which means that the file objects

corresponding to a request are only updated when there are no other events pending in

the main loop. All this allows for lag-free scrolling in large directories while thumbnails

are generated in the background.

27

2 Migration Process and Selected Topics

Whether the ThunarThumbnailer class will moved into exo in the future is unclear.

However, considering the complexity it hides from applications it might be worth making

it available to others. Image viewers with thumbnail bars have similar requirements and

would thus benefit from it.

28

3 Summary and Evaluation

The evaluation sums up what was implemented and goes on to describe what bene-

fit and implications this has and whether there were any regressions introduced. On

August 21st, 2009, all changes made during the migration were merged into the main

development branch of Thunar, which will eventually lead to its next stable release.

Besides dropping ThunarVFS by replacing it with GIO, the migration also introduces

new features visible to the end user, some of which are described in section ??. Quite

naturally, the migration was not carried out without regressions. The previous chapter

already covered some of the API and functionality differences between ThunarVFS and

GIO. As virtual file system parts of these two libraries (it was left out on purpose until

now that GIO also includes APIs for network I/O) cover about the same functionality,

the number of major regressions is small. Section 3.3 explains some of the issues that

emerged due to the migration to GIO and need to be dealt with in the future.

3.1 Summary of the Changes

Overall, 271 files were changed during the migration, making for a total of 25,437

insertions and 42,458 deletions. Much of this is due to the removal of ThunarVFS, which

alone includes 31,167 deletions. Directly added during the migration were 15,650 lines

while 5,842 lines were deleted. All in all, 118 files were manually edited to realize the

implementation of GIO in Thunar.

Much of the lines added to Thunar were part of reimplementing the file operation

jobs from ThunarVFS based on GIO and moving them into Thunar itself. Almost as much

effort was put into the other main parts of the migration: the thumbnailer D-Bus client

implementation in Thunar and the code modifications related to loading file information

as well as mounting and opening volumes and files asynchronously.

As described earlier, the base classes of the job framework was moved into exo,

something other applications will be able to benefit from in the future. A program called

xfce4-screenshooter, which takes screenshots of the desktop and allows users to save

or upload them to the web has already adopted it for its implementation of the upload

feature.

29

3 Summary and Evaluation

With Tumbler, a new D-Bus service for creating thumbnails desktop-wide, all in all

worth around 7,000 physical lines of code spread across 50 source files, was designed

and implemented during the migration. Not only is it extensible to support more file

types, it also leaves room for optimization by making different scheduling algorithms

for thumbnail requests possible. It is also not limited to Thunar but can be used by

any desktop application, examples including image viewers and desktop managers. As

it depends only on GLib and D-Bus, it might furthermore be an attractive solution for

other environments. A future collaboration with the Maemo project has briefly been

discussed.

3.2 New Features

An undertaking like this would not be half as interesting if there were no new features

to be expected from it. The migration from ThunarVFS to GIO was mostly a technical

one that was started with the goal to reduce the maintenance overhead and to reuse

a well-tested piece of software that was already being used indirectly as a part of the

software stack Thunar depends on. As such, most of the changes took place under the

hood and most of the new features visible to the user are more of a consequence of

moving towards GIO rather than being implemented as a part of the migration itself.

One of the key features of GIO is its extensibility. As was already elaborated on in the

introduction chapter, it allows for a reuse of available GIO extensions, the most impor-

tant being virtual file system implementations, in Thunar and other applications written

on top of GIO. With GVfs in particular, a number of virtual and remote file systems are

available and supported by Thunar out of the box. Their seemingless integration is guar-

anteed by a uniform GIO API and a number of modifications made to Thunar during the

migration, such as the aforementioned asynchronous resolving and opening of volumes

and files.

Thanks to GVfs and its virtual file system implementations for Windows network

shares, SFTP, FTP and WebDAV, Thunar now integrates much better in private as well as

corporate networks. These remote file systems have always been one of the features most

desired by Thunar’s user base. So much missed even that some Xfce-based distributions

decided to ship their own patches and workarounds to enable rudimentary support for

file sharing or remote file browsing. Where Thunar only supported local paths and

trash:// or file:// URIs to be entered/opened by the user, it now supports all of the

URI schemes supported by available GIO extensions in addition to local paths.

URIs can be mounted and opened by typing them into the location bar or dialog or by

issuing commands like thunar ssh://xfce.org/home/jannis in a terminal. In addition

30

3.2 New Features

Figure 3.1. Thunar asking for SFTP username and password.

to this a network icon was added to the side panel in order to give users Windows

environments faster access to files shared across the network. When opening a URI that

requires login information, the user will be asked to enter his credentials, as can be seen

in figure 3.1, before Thunar continues with mounting and opening the directory or file.

Not only file systems on remote machines are supported. GVfs also ships special im-

plementations for browsing the contents of digital cameras, discovering available Blue-

tooth devices or viewing all available and already mounted volumes. While some of

these involve cryptic URIs including hardware device identifiers, most of them are ac-

cessible in a similar way to the local file system.

All of these file systems are mounted as long as the active desktop session lasts. They

are presented to the user like local folders and files. Files can be copied and moved

around between all of these locations as long as they are writable. Even thumbnails are

generated for all URI schemes supported by the Tumbler thumbnailers installed on the

system. When the FUSE (Filesystem in USErspace) package is available, GVfs even pro-

vides a compatibility layer that mounts virtual file systems into the user’s home directory

and thus makes them accessible via local paths. This allows the file manager to hand

remote files over to applications only supporting local paths.

The trash:// scheme plays a special role in Thunar, as its availability has an in-

fluence on how delete operations are handled everywhere in the file manager. If it is

supported files are by default moved to the trash when they are deleted. This is very

convenient as they can be restored from there at a later point. If the trash implementa-

31

3 Summary and Evaluation

Figure 3.2. Shared progress dialog for file operations before and after.

tion is unavailable files cannot be trashed and are therefore deleted permanently once

confirmed by the user. After earlier releases of Thunar, a lot of users have expressed

an interest in disabling the trash functionality, something that has now become reality

thanks to the extensibility of GIO.

Another user-visible feature that was implemented along with the migration and

the refactoring of the job classes was a redesign and overall improvement of the file

operation progress dialog. Thunar had traditionally used one progress dialog for each

file operation. When the user copied files from one folder to another, he was presented

with a dialog providing him with information about the progress of the operation and

the time remaining. With each additional operation another progress dialog was opened.

People tend to do things in parallel. The desktop setup with multiple workspaces

used on most systems except for Windows encourages to run applications for different

tasks concurrently. It thus comes to no surprise that multiple progress dialogs for in-

dependent copy, move or delete operations are a very common scenario. One example

would be image or movie folders where people choose the images or movies they want

to copy to a USB stick one by one and launch copy operations as they go. With all these

parallel tasks and operations opened or running, it is critical to keep an eye on the num-

ber of windows opened by an application. Avoiding clutter becomes an important aspect

in designing an application.

Modern file browsers like Nautilus from GNOME or the OS X Finder today use a

single dialog to visualize the progress of all file operations. During the migration, a

similar shared progress dialog was implemented for Thunar. Figure 3.2 shows the new

dialog in comparison to its predecessor which used more space for individual operations

and was less descriptive by not mentioning the destination of copy and move operations

or the source directory when deleting files. In addition to showing all active operations,

the new dialog also shows a status icon in the notification area of the desktop panel,

allowing the dialog to be hidden on demand.

32

3.3 Known Major Regressions

Other Features

There are a few minor features that are not as noticable as the ones mentioned before.

One of them is auto-completion not only for local files entered in the location bar or

dialog of Thunar, but also for URIs on mounted remote file systems. In addition to that

the Thunarx plugin interface has been updated so that plugins now have access to the

GFile and GFileInfo objects associated with files and thus all their functionality is also

available on virtual file systems.

3.3 Known Major Regressions

Luckily, the number of known major regressions after the migration is small. One that

was already described briefly in section 2.2 is related to the GAppInfo interface of GIO.

Gompared to similar classes from ThunarVFS, GAppInfo is limited. Not only does it no

longer support so-called desktop actions, a now deprecated part of the desktop entry

specification [1], which allowed applications to install context menu actions and its own

application information in a single file. It also provides no information about whether

an application can handle multiple URI or path arguments at once. The absence of this

information can lead to problems when trying to open multiple selected files with an

application via the context menu.

Another known regression is related to the dependencies of Thunar. Before the mi-

gration, HAL was the only external library required for volume management to work.

Trashing files instead of deleting them permanently was supported out of the box with-

out additional dependencies. At the current state after the migration neither volume

management nor the trash are supported without dependencies which were not re-

quired before. GVfs has to be installed for both features to work, and, depending on

the version of GVfs, either HAL or DeviceKit-disks together with gnome-disk-utility are

required for volume management. That not being enough, GVfs also depends on a tool

called gnome-mount for mounting removable drives and partitions which is hard-coded

in the GVfs source code. Two additional dependencies enabled on most distributions are

the GNOME configuration system GConf and gnome-keyring, which is used to manage

the user’s credentials entered when mounting remote file systems. While all these de-

pendencies are reasonable and fulfill a clear purpose, they were not required before; a

situation that has to be improved significantly considering that one of the main design

goals of Xfce and also Thunar is to go easy on resources and thus, not to depend on

libraries that can be avoided at little maintenance cost.

33

3 Summary and Evaluation

3.4 Consequences for Other Applications

The migration has several implications on other applications in the Xfce desktop environ-

ment. A lot of them, like ristretto, an image viewer, or xfburn, the Xfce burn software,

or xfdesktop, the Xfce desktop manager, depend on ThunarVFS for file browsing fea-

tures. The latter not only uses ThunarVFS for file icons on the desktop, it also hooks

into Thunarx to query context menu items from Thunar plugins and relies on Thunar’s

D-Bus interface for opening folders and displaying the application chooser dialog when

opening one or more files.

The 4.8 release of Xfce which is scheduled for April 2010 is intended to be the first

release without ThunarVFS. As a consequence, all applications depending on it will have

to be updated to use GIO instead. While this is not problematic for the small number of

Xfce core components, there are also a number of applications and panel plugins written

by other people outside the core Xfce development team. In order to keep those in a

working state until their maintainers have time to migrate them, ThunarVFS has been

moved into its own repository. It will most likely see will see one or two new releases

until its development will be completely halted. This is done so that distributions can

package the standalone version of ThunarVFS and update other packages which have

not been migrated yet.

A new problem has emerged in the exo library at the very end of the migration. One

of its command line tool, called exo-open, which is frequently used for opening arbitrary

paths or URIs, and which decides whether to open these locations in Thunar, the web

browser or the default email client now needs to handle a variable amount of additional

URI schemes such as network:// or gphoto2:// (a URI scheme used for browsing the

contents of digital cameras). It can no longer assume a fixed set of URI schemes (previ-

ously the file:// and trash:// schemes were hard-coded into ThunarVFS) and instead

needs to determine which schemes are supported by the GIO extensions available, and

which to open in the file manager. This directly or indirectly affects a lot of applications

and custom scripts written by users.

An solution for this was recently implemented by Nick Schermer, another Xfce devel-

oper who at the time of writing is responsible for maintaining the exo library. The im-

plementation extends GIO by creating default GAppInfo objects for various URI schemes.

These are indirectly used when the exo-open utility calls the gtk_show_uri function from

GTK+ to open a URI in an appropriate application. This method also ensures that URIs

displayed in about dialogs and other GTK+ widgets are launched exactly the same way

URIs are opened from the command line or user scripts.

34

4 Outlook

Even though the changes made during the migration have all been merged into Thunar,

exo or into a separate package like Tumbler, this does not mean that the work ends here.

The migration can be seen as a successful attempt to revive the development activity

around Thunar which since the last release actively being worked on by Benedikt Meurer

was more or less limited to bugfixes and minor improvements. The move towards GIO

introduces new challenges, as some of the new features leave room for improvements in

their integration into Thunar. But before this can be worked on, the changes have to be

tested extensively, regressions have to be fixed and ideally, the impact of the migration

to other applications such as the xfdesktop desktop manager has to be reduced. As a

consequence, several key areas that need improvement stand out against the rest.

For a continued backwards-compatible support of custom ThunarVFS thumbnailer

scripts, a Tumbler plugin is planned to be written which exposes the combined informa-

tion about all thumbnailer scripts to Tumbler and acts as a proxy between Tumbler and

the thumbnailer scripts by forwarding all work to the scripts when receiving thumbnail

requests. Some of the built-in thumbnailers shipped with ThunarVFS also need to be

rewritten or ported to Tumbler.

In order to avoid GVfs as a dependency in Thunar for volume management, writing

a custom GIO volume monitor extension is currently under consideration, either based

on HAL or DeviceKit-disks. Considering its ongoing deprecation, HAL might seem like a

bad choice but unlike DeviceKit-disks it is already available on Unixes other than Linux.

Portions from ThunarVfsVolumeManager based on HAL could probably be reused, which

could make HAL a quick solution for Thunar 1.2 which is supposed to be released along

with Xfce 4.8 in April 2010. A new implementation based on DeviceKit-disks could then

be developed afterwards. On the other hand quite a number of bugs have been filed

against the code based on HAL, and especially mounting NTFS partitions seems to be

problematic. This is still being discussed and a solution will hopefully be available as

part of the next Thunar release.

As explained in detail in sections 2.2 and 2.4, the file operation APIs in GIO are less

powerful than than what ThunarVFS provides. Consequently, other Xfce applications,

especially xfdesktop, will hit the same problems with complex, possibly recursive opera-

tions which were already solved in Thunar. Together with the additional work put into

35

4 Outlook

the shared file operation progress dialog, this makes Thunar a good candidate for an

extended D-Bus service which not only provides an interface to open or launch files and

directories but also makes common dialogs and operations available to other parts of

the desktop. As such, D-Bus methods for displaying file properties dialogs as well as for

copying, moving or deleting files are planned to be added with next release of Thunar.

So far, the integration of various virtual and remote file systems supported by GIO

via GVfs is only implemented at a very basic level. Directories and files on these file

systems can be browsed or opened as if they were on stored locally. However, entry

points have to be entered by the user manually. For some backends this requires a

deeper technical knowledge and thus cannot live up to the user interface quality of

other parts of Thunar. A better integration of these file systems is desirable. Gigolo, an

application for managing and opening virtual file system bookmarks based on GIO and

GVfs, is an example of how the access to such locations can be realized with a graphical

user interface. Some ideas can probably be taken from there and integrated directly into

Thunar.

Being able to manage Windows network shares is a key feature to make Thunar more

interesting and useful especially in corporate networks. As GIO does not provide the

required functionality to share folders over the network, other ways to achieve this will

have to be examined. A plugin called thunar-shares-plugin, written by Daniel Morales,

allows people to enable folder sharing in the folder properties dialog. It is, however, not

possible to prepare the system for this without superuser access. Whether this is possible

or not is left open for investigation.

Overall, the migration has been a success without any critical issues left to be re-

solved. The Thunar development has been revitalized and even though some of the

areas that could be improved are nothing new (Windows network shares were never

fully supported by Thunar itself), several opportunities for future enhancements have

been uncovered. The migration to GIO provides a good starting point to making Thu-

nar more powerful while maintaining its simplicity and the minimalistic user interface

concept which has made it popular.

36

Literature

[1] Preston Brown, Jonathan Blandford, Owen Taylor, Vincent Untz, and Waldo

Bastian. Desktop Entry Specification. http://standards.freedesktop.org/

desktop-entry-spec/1.1/, 2004–2008.

[2] Jens Finke and Olivier Sessink. Thumbnail Managing Standard. http://jens.

triq.net/thumbnail-spec/, 2001–2004.

[3] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime) part

two: Media types. http://tools.ietf.org/html/rfc2046, 1996.

[4] Philip Van Hoof and Rob Taylor. Thumbnail management D-Bus specification. http:

//live.gnome.org/ThumbnailerSpec, 2009.

[5] Alexander Larsson. Plans for gnome-vfs replacement. http://mail.gnome.org/

archives/gtk-devel-list/2006-September/msg00072.html, 2006.

[6] Thomas Leonard. Shared MIME-info Database. http://standards.freedesktop.

org/shared-mime-info-spec/0.18/, 2004–2008.

37

http://standards.freedesktop.org/desktop-entry-spec/1.1/
http://standards.freedesktop.org/desktop-entry-spec/1.1/
http://jens.triq.net/thumbnail-spec/
http://jens.triq.net/thumbnail-spec/
http://tools.ietf.org/html/rfc2046
http://live.gnome.org/ThumbnailerSpec
http://live.gnome.org/ThumbnailerSpec
http://mail.gnome.org/archives/gtk-devel-list/2006-September/msg00072.html
http://mail.gnome.org/archives/gtk-devel-list/2006-September/msg00072.html
http://standards.freedesktop.org/shared-mime-info-spec/0.18/
http://standards.freedesktop.org/shared-mime-info-spec/0.18/

	Erklaerung
	Listings
	Introduction
	Thunar and GIO in a Nutshell
	A Brief Comparison of ThunarVFS and GIO
	Overview of the Migration to GIO

	Migration Process and Selected Topics
	Planning Phase and Migration Strategy
	A Detailed Comparison of ThunarVFS and GIO
	Resolving and Loading Files Asynchronously
	Framework for Time-Consuming Operations
	Thumbnail Generation Using the Tumbler D-Bus Service

	Summary and Evaluation
	Summary of the Changes
	New Features
	Known Major Regressions
	Consequences for Other Applications

	Outlook
	Literature

